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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Quantum theory of nonlinear optical phenomena 

D. F. WALLS 
Department of Physics, University of Auckland, New Zealand 
MS.  received 1st July 1971 

Abstract. A treatment of nonlinear optical phenomena beginning with a 
microscopically correct Hamiltonian containing the Bose operators of the light 
field and the Fermi operators for the optically active electrons in the medium 
is presented. Using techniques recently developed, a nonperturbative solution to 
the Schrodinger equation is possible. No linearization or semiclassical approxi- 
mations are introduced. Two photon emission and absorption including both 
the degenerate and nondegenerate cases are considered. Parametric amplifica- 
tion and frequency conversion are investigated as examples of multiphoton 
processes. Atomic cooperation is shown to enhance the above phenomena. A 
formal treatment of a model illustrating super and subradiance is included. 

1. Introduction 
Nonlinear optical effects arise as a result of the nonlinear response of a medium 

to intense light fields. A successful method of analysis developed by Bloembergen 
(1965) (Armstrong et al. 1962) expands the polarization in powers of the electric 
field, the proportionality constant being a nonlinear susceptibility tensor for the 
medium. Treating the electromagnetic field classically one obtains a set of coupled 
differential equations for the amplitudes of the interacting waves. The  nonlinear 
susceptibility of the medium is taken into account only phenomenologically as a 
coupling constant. Quantum mechanical calculations of the tensor susceptibility 
have been made independently (Armstrong et al. 1962, Bloembergen 1965, Butcher 
1965). A deficiency of the classical treatment of the electromagnetic field is the 
omission of the contribution of spontaneous emission to the stimulated processes. 
The first quantum mechanical model for nonlinear optical effects was proposed by 
Louise11 et al. (1961). They set up a phenomenological Hamiltonian for the inter- 
acting quantized field modes in a parametric amplifier. The  nonlinear susceptibility 
tensor of the medium was included as a coupling constant. The pump field was treated 
as a constant classical variable in order to linearize the Heisenberg equations of 
motion for the mode operators. Recently methods have been developed capable of 
solving the nonlinear quantum problem for special cases (Walls and Barakat 1970). 

A microscopically correct Hamiltonian would contain the Bose operators of the 
light modes and the Fermi operators of the optically active electrons in the medium. 
Such an approach was adopted by Graham and Haken (1968) in studying the optical 
parametric oscillator. They derived quantum mechanical Langevin equations for 
the field and electron operators which contain dissipation and fluctuation terms. 
The electron operators were then eliminated by an iteration procedure which leaves 
a set of coupled nonlinear field equations. These were solved by linearization below 
threshold and by quantum mechanical quasilinearization above threshold. A similar 
Hamiltonian was employed by Shen (1967) in describing multiphoton emission and 
absorption. Shen derived an equation of motion for the density operator of the 
total system, then traced out over the atomic variables leaving an equation of motion 
for the density operator of the field alone. 
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8 14 D. F. Walls 

In  this treatise we shall present a general analysis of nonlinear optical phenomena 
starting from such a microscopically correct Hamiltonian. Recently techniques 
have been developed which enable a nonperturbative solution to the Schrodinger 
equation with the Hamiltonian containing both field and electron operators to be 
found. This technique was developed to analyse the interaction of a single mode of 
the electromagnetic field with N two level atoms (Jaynes and Cummings 1963, 
Tavis and Cummings 1968, Mallory 1969, Walls and Barakat 1970, Scharf 1970). 
It has since found applications in studies of the Raman effect (Walls 1970, 1971a) 
and double resonance phenomena (Walls 1971b). No linearization or semiclassical 
approximations are introduced. Relaxation effects are however neglected in our 
analysis. 

In  4 2 we present a general Hamiltonian formulation of the interaction between 
a quantized electromagnetic field and an ensemble of Nf-level atoms. The  general 
method of solution for this type of problem is outlined in 4 3. The following sections 
are concerned with specific examples of phenomena described by the general 
Hamiltonian. 

Here we 
distinguish between the degenerate case involving only two atomic levels and the 
nondegenerate case which involves three atomic levels. The  absorption and emission 
processes are shown to be enhanced by the presence of atomic cooperation. 

In  4 6 and 4 7 parametric amplification and frequency conversion are studied as 
examples of multiphoton processes involving the absorption and subsequent re- 
emission of photons with different frequencies (Winter 1969). Such processes 
benefit greatly from atomic cooperation since both the absorption and subsequent 
re-emission processes are enhanced. The growth of the emitted photons is shown 
to be proportional to the fourth power of the number of cooperating atoms. 

The concept of cooperation in spontaneous emission processes (superradiance) 
was first introduced by Dicke (1954) who presented a perturbative quantum treatment. 
In  4 8 as an illustrative model we consider two 2-level atoms interacting with a single 
mode of the radiation field with one quantum of energy present. An exact solution 
is found for the time dependent wavefunction of this system. The solution is shown 
to contain the cases of super and subradiance. 

Another important nonlinear phenomenon, namely the Raman effect is described 
by the general Hamiltonian. However, since this effect has been treated extensively 
in two previous publications Walls (1970), Walls (1971a) it has been omitted here. 

2. Hamiltonian formulation of the nonlinear interaction 

modes as (Glauber 1963) 

In  § 4 and 4 5 we consider two photon emission and absorption. 

The electric field operator for the free field may be expanded in terms of normal 

E ( r ,  t )  = i 2 (4 f iwk)1 '2(ak( t )Uk(r )  -akt(t)uk*(r)) (2.1) 
k 

where ak(t)  and ak+(t) are the boson annihilation and creation operators for the Kth 
mode. The  effects of the linear polarizability in a nondissipative isotropic medium 
may be accounted for by including a dielectric constant E = 1 +4q where x is the 
linear susceptibility of the medium (Shen 1967). The mode functions are then taken 
to satisfy the wave equation 

(p+ $2) zLk(r) = 0 
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with the orthonormality condition 

The  total Hamiltonian describing the interaction of the electromagnetic field with a 
nonlinear medium may be expressed in the following form: 

H = H,+H, (2.4) 

HO = z h w k a k t a k  $- H m e d ~ u m .  (2.5) 

where H o  the Hamiltonian for the noninteracting system is 

We consider the medium to consist of an ensemble of Nf-level atoms with free 
Hamiltonian 

N I  

H m e a i u m  = A c c QutCui+C,t (2.6) 
i = l  c c = l  

where the cGi are the fermion annihilation operators for the CI level of the ith atom. 

written as 
A general interaction Hamiltonian describing a m+n photon process may be 

f=l a,B 3 = 1  k = l  

where is the matrix element for a m+n photon transition, consisting of 
m emissions and n absorptions and an atomic transition from state c( to state /3. The 
term E,‘’’ represents a single mode of the electromagnetic field. (This is appropriate 
for cavity modes.) 

E&-) ( r f )  = {Ek(+’(rt)}’ = i (ahwk)1’2uk(r,)ak. (2.8) 
Substituting equation (2.8) for Eh(-) and E,‘+’ into equation (2.7) and assuming an 
even distribution of atoms throughout the interaction volume V the interaction 
Hamiltonian becomes 

N m n 

(2.9) 

(2.10) 

(m+n) 
H1 2 2 puB 2 c B ~ c , ~  n a j  n akt+adjoint 

1 = 1  j = l  k = l  a,R 
where 

m+n 
PUR (m+n) - - €(m+n) n i (&hUj)1’2 1 d3r fi U j ( r )  5 Uk*(r). 

J = 1  v 3 = 1  k = l  

The  coupling constants pz+n will be taken to be real for convenience. This can 
always be accomplished by appropriate choice of the arbitrary phases of the mode 
functions. 

3. Method of solution 
The Heisenberg equations of motion resulting from a Hamiltonian of the form 

described in 5 2 are nonlinear operator equations. One may however circumvent 
this intractable problem in the following manner. If the interaction described by 
equation (2.9) is perfectly energy conserving the following commutation relations 
may be shown to hold: 

[HoO,H] = [H, ,H] = [HOO,H,] = 0 (3.1) 
4A 
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where Hoo denotes the perfectly energy conserving free Hamiltonian. Thus Hoo 
and H, are constants of the motion. Highly nonenergy conserving terms such as 
cZtclat (E ,  > E,) are necessarily excluded from the Hamiltonian (rotating wave 
approximation). Such terms merely give rise to small frequency shifts. However, 
an energy mismatch in a basically energy conserving term such as c,+c,a(E, > E,) 
may be taken into account in the following fashion. We may write the total 
Hamiltonian in the form 

H = Hoo+Hl' ( 3 4  
where 

HI' = H1+Ho-Hoo. 

Then provided equation (3.1) holds, it follows that 

(3.3) 

[HoO, HI = [H1', HI = [H"O, H,'] = 0. (3.4) 

Thus Hoo and H1' are constants of the motion. Since Hoo and H,' commute a repre- 
sentation exists in which the total Hamiltonian H is diagonal (Messiah 1961). 
This diagonal representation is the solution to the Schrodinger equation. 

One proceeds by choosing as a basis set the eigenstates of the free Hamiltonian Hoo. 
We may write these as a column vector 

where N is the dimension of the Hilbert space of the system studied. 

the form 
The Schrodinger equation for the modified interaction Hamiltonian H' assumes 

HI'Y = &AY (3 4 
where A is the matrix representation of H with dimension N x  N. The diagonaliza- 
tion of the matrix A yields the eigenvalues X and eigenstates CD of the system 

0 = U T  (3.7) 

where U is the unitary matrix that diagonalizes A. The unitary property follows 
from the Hermitian character of the Hamiltonian. The  probability amplitude of the 
system being in a particular state at time t may be calculated exactly from the known 
eigenstates and eigenvalues. 

Alternatively, one may calculate the probability amplitudes directly by expanding 
the time dependent wavefunction of the system as a linear combination of the eigen- 
states of Hoe. The validity of this expansion as a basis set of states for the whole 
system rests on the commutative property (equation (3.4)). The wavefunction Y(t) 
of the system at time t may be written 

where the c,(t) are the probability amplitudes of the system being in s ta te j  at time t. 
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The  time dependent Schrodinger equation is 

i h dY(t) 
dt 

= H\T(t). (3.9) 

The  cf(t) are then obtained as solutions of a coupled set of differential equations. 
Though in this treatise we shall use the former approach both methods are equivalent. 

The  above method provides a powerful tool for analysing certain problems 
involving the interaction of boson and fermion fields. It has its best applicability for 
systems where the dimension of the Hilbert space is small since an analytic solution 
is then feasible. Thus it is ideally suited for systems involving two or three fermion 
levels. 

4. Two photon emission and absorption-degenerate case 

Two photon transitions may be divided into two categories, degenerate and 
nondegenerate (Oka and Shimizu 1970). In  the degenerate case shown in figure 1 
each atomic level is a state of mixed parity. These transitions may only occur in 
media which lack inversion symmetry. 

Figure 1. Double photon transition in the degenerate case. 

The  Hamiltonian for the two photon transition shown in figure 1 is taken to be 

N N 

Ho = ha,  2 c1$clj + hQ2 C c2jtcZf + hwlaltal + hw2a2+a2 

Hl = fip(2) 2 (ala2cI1c2~ + alta2t~l$~2i).  

(4.1) 

(44 

j=1 f = l  

N 

f = l  

We allow for a frequency mismatch between the photons and the atomic energy 
levels 

w l + w 2  = !22-!21-2A0. (4.3) 

4.1. Incoherent atomic coupling 
We shall first consider the atoms in the medium to act independently, that is, 

with ‘cooperation number’ N,  = 1 (Dicke 1954, Arecchi and Courtens 1970). Thus 
we may restrict our attention to the interaction of the light field with a single atom. 
We choose as a basis set the states lj, n,, n 2 ) ,  where ( j )  are the stationary states of the 
atom and Ink) are the number states for the field modes with frequencies wk.  A 
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complete set of basis states assuming the relaxation time of the upper level is infinite is 

y+ = ( p > % e 2 ) >  ] 2 , n l - L % - 1 ) ) .  (4.4) 
The interaction matrix A (equation (3.6)) in this representation is 

where 

The eigenvalues of the system are f Gab where 

From the eigenstates and eigenvalues we may calculate exactly the probability for a 
two photon transition to take place. If the atom is initially in the ground state the 
probability for a two photon absorption is 

When the atom is initially in the excited state it can be shown that the probability 
for a two photon emission is 

2 

P,i(t) = !?- sin2 Get 
Ge2 

where 

and 

(4.9) 

(4.10) 

For an ensemble of N atoms with Nl initially in the ground state and AT2 initially 

P( t )  = N1 Pa:( t) - N2P,'( t )  . (4.11) 

For short times and Aw = 0 this agrees with the result of first order perturbation 
theory 

P(t)  = {iVlnln2 - N2(nl + l ) (n2  + l ) )p(2 '2 t2 .  (4.12) 

excited the net two photon absorption rate is 

4.2. Coheipent atomic coupling 
We now consider the atoms to act collectively with cooperation number iv, = N .  

In  treating atomic coherence effects we find it convenient to make the following 
transformations on the atomic operators 

.v N 

2 CljCZj+ = 2 aj+ = Sf 

2 C l j t C Z j  = 2 aj- = s- 
j = 1  j = 1  

N .v 

3=1 j = 1  
(4.13) 
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Here uf+, 0,- are the raising and lowering operators for the individual atoms. 
S+ and S-  are the collective raising and lowering operators for the N atoms. S, is 
proportional to the total atomic energy operator with eigenvalues running from 
NI2 to -N/2. 

' Atomic coherence phenomena can perhaps be illustrated with greater lucidity by 
introducing the Schwinger representation for angular momentum (Schwinger 1965) 

S+ = ala2? 
S -  = altaz 
S ,  = 4-(a2ta2 - altal) (4.14) 

where ai and a2 obey boson commutation relations, However, they are not true boson 
operators since the eigenvalues of alta and azta2 only span the integer spectrum 
from 0 to N,. For a system of N atoms with N, = N the eigenvalues of aZtaz and 
altal are the actual occupation numbers of the upper and lower levels. 

We consider an initial state with Nl atoms in the ground state and N2 excited 
where Nl + Nz = N, = N. For a single two photon absorption process we take as 
a basis set 

Yk',t = (IN,, N 2 ,  nl, n2 >, /.V, - 1, N2 + 1, n1 - 1, n2 - 1 >). (4.15) 

Here INi> refers to the occupation number of the atomic levels and Inr> refers to 
the number states of the field. The two states in equation (4.15) do not form a 
complete set of basis states for a single two photon absorption. Other states contribute 
to processes corresponding to a real absorption of a pair of photons accompanied by 
virtual absorption and re-emission of photon pairs. However, neglecting these 
states is analogous to the ladder approximation to the Bethe-Salpeter equation 
(Salpeter and Bethe 1951). The  validity of this approximation in the present context 
has been discussed by Walls (1971~). By taking the two states of equation (4.15) as a 
basis set we still include arbitrarily high powers of H I .  Hence this approximation 
is much superior to a perturbation calculation. 

The  interaction matrix A (equation (3.6)) in the representation equation (4.15) is 

(4.16) 

where 
g, = p(nin2( iV2 + l)Ni}1''. 

The  eigenvalues of the system are G, where 

G, = {Aw2 + nlnJl"(Nz + 1)p")')"'. (4.17) 

The probability for a two photon absorption process to take place is calculated to be 

g c 2  

GC2 
P,(t) = ---sin2 Got. (4.18) 

For short times and A w  = 0 this becomes 

P,( t )  = n1n2N1( N z  + 1 ) p P  * (4.19) 

The  maximum absorption rate occurs for an equal population of upper and lower 
atomic levels N, = N2 = N/2. The That is, a 'superabsorbing atomic state'. 
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absorption rate for a superabsorbing atomic state is proportional to the number of 
atoms squared as opposed to simply the number of atoms when all the atoms are in 
the ground state. It would be possible to reach such a superabsorbing state starting 
from all atoms in the ground state provided the duration of the incident light pulse 
is less than or comparable to the lifetime of the excited levels. A similar result to 
the above may be derived for two photon emission. 

5. Two photon emission and absorption-nondegenerate case 
We now consider the nondegenerate case where each level has a definite parity. 

Three atomic levels are then required to satisfy conservation of angular momentum 
in a two photon process (figure 2). 

Figure 2. Double photon transition in the nondegenerate case. 

This process may be regarded as an example of double resonance phenomena 
(Walls 1971b). The  Hamiltonian for the two photon transition shown in figure 2 is 

N N N 

Ho = fiQi 2 ~ l j + ~ l j  + fin2 2 ~ z j + ~ Z j  + f i Q 3  2 ~ 3 f t ~ 3 j  
J = l  3 = 1  J = l  

We set S = 0, that is w1 - w2 = Q3 - Ql and allow for an energy mismatch 2Aw 
with the intermediate level 

2Aw = O J ~ - ( Q ~ - Q ~ )  = Q z - Q 2 - ~ 2 .  ( 5 . 3 )  
A finite value for 6 could have been chosen but then a solution for the eigenvalues 

in closed form is not possible without approximation (Walls 1971b). 
We shall consider the case of incoherent atomic coupling, that is, N, = 1, thus we 

need only consider the interaction with a single atom. A complete set of basis states 
describing a two photon absorption process is 

'4'' = ( / 1 , f l i , % ) ,  12>ni-1 ,%),  \ 3 , % - 1 , % - 1 ) ) *  (5.4) 
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The  interaction matrix A (equation (3.6)) in this representation is 

where 

The  eigenvalues are Aw, f G12 where 

G12 = (8,' + 8,' + (5 0 7 )  

For Nl atoms all initially in the ground state the two photon absorption rate is 
given by 

P(t) = (5.8) 

The  rate for two photon emission may be derived in an analogous fashion. For 
perfect resonance and short times the above result agrees with perturbation theory 
calculations 

P(t) = N1nln2(p'1)p'2))2t4. (5.9) 
The  initial absorption rate grows as t4 as opposed to the t2 growth for the degenerate 
case. This t4 growth reflects the two step nature of the process. However, the dipole 
matrix elements p' l)  are many orders of magnitude larger than the matrix elements 
p(2) for the two photon transition. The  relative magnitudes of these matrix elements 
are compared in the papers of Gold (1969), and Oka and Shimizu (1970). 

6. Frequency up-conversion and second harmonic generation 
The process of frequency up-conversion may be considered as a two step process 

consisting of a two photon absorption followed by a single photon emission at the 
sum frequency as illustrated in figure 3 (Winter 1969). 

n2 

Figure 3, Frequency up-conversion as a multiphoton process. 

The  frequency up-conversion process must take place in a crystal lacking inversion 
symmetry. We consider three modes of the electromagnetic field, the pump, signal 
and idler modes with frequencies up, ws and wi respectively. We allow for a 
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frequency mismatch with the atomic levels 

The Hamiltonian for the frequency up-conversion process depicted in figure 3 is 

N N 

Ho = kwpap tap+kosa , ia s+kw,a~a i+kQl  2 cljtclj+fiQ2 2 czjtcaj (6.2) 
j = 1  i = l  

A’ 1v 
Hl = k 2 ~ ~ 2 ’ ( a p a i c l i c 2 ~ + a , t a ~ ~ l ~ ~ 2 j )  + k 2 ~‘1~(a,tc,~c2j+a,clic2j’) .  (6.3) 

j=1 i = l  

6.1. Incoherent atomic coupling 

basis states for a one photon up-conversion process 
We first consider the atoms to act independently and choose the following set of 

Yt = (11, np, a,, ni ) ,  12, np- 1, n S - 1 ,  [ I ,  np-- l ,  nS--1, e,+ 1 >) (6.4) 

where the states I j )  are the stationary states of the atom and the states Ink) are the 
number states of the field modes with frequency wk.  In  principle an n photon 
up-conversion process may be treated, however, an analytic solution is then mathe- 
matically complex. The  choice of the three states in equation (6.4) to represent a 
basis set for a one photon up-conversion process is again analogous to the ladder 
approximation to the Bethe-Salpeter equation (Walls 1971~). 

The interaction matrix A (equation (3.6)) in the representation equation (6.4) is 

where 

The  eigenvalues found by diagonalizing the matrix A are Aw, Gf where 

(6.7) Gf = (AW2+g,s2+gi 2 112. 

The  corresponding eigenstates are given by equation (3.7) with UT defined by 
equation (6.4) and where U is the 3 x 3 matrix 
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where 
g = (gPs2+gi2)1'2 

S = G f + A w  
D = G f - A w  G C ~  = D2+g2 

p 2  = s2+g2. 

We note here the close similarity between the above eigenstates and eigenvalues 
and those for Raman scattering from a three level molecule (Walls 1971a). In  fact 
the exact analogy to the frequency up-conversion process is the generation of 
anti-Stokes radiation. The generation of Stokes radiation corresponds to the para- 
metric amplification process considered in § 7. While in frequency up-conversion 
two photons combine to create a photon at the sum frequency, in anti-Stokes genera- 
tion a photon plus a molecular excitation combine to create a photon at the sum 
frequency. 

For N atoms all initially in the ground state and acting independently the rate of 
frequency up-conversion calculated from the above eigenfunctions and eigenvalues is 

P(t) = (6.9) 

For short times and h w  = 0 this reduces to 

P(t) = NnPns(ni + l)(p(1)pC2))2t4. (6.10) 

The  t4 dependence again reflects the two step process. 

6.2. Atomic coherence 
I n  a medium where there is some degree of atomic cooperation the frequency 

up-conversion process is enhanced in a similar way to two photon absorption. The  
calculations may be performed in an analogous fashion to that described in $4.2. 
We shall just present the results here. For an ensemble of N atoms with cooperation 
number N, = N with N1 atoms in the ground state and N2 excited the rate of 
frequency up-conversion is (for short times and Aw = 0) 

P(t) = npns(ni + 1)N12(N2 + 1)2(p'1)p'2))2t4. (6.11) 

The maximum rate of up-conversion occurs for Nl = N2 = N/2. The rate of 
up-conversion is then proportional to the number of atoms to the fourth power since 
both the absorption of two quanta and the subsequent emission of a single quantum are 
enhanced by the atomic cooperation. That is, a superabsorbing state followed by a 
superradiant state. 

6.3. Second harmonic generation 
A special case of frequency up-conversion is the much studied process of second 

harmonic generation. This occurs when up = ws = wi/2. The  results for second 
harmonic generation are identical to the above results for frequency up-conversion 
with the substitutions n p  = n,+ 1 = n,, where n,  is the number of photons in the 
fundamental field. 

7. Parametric amplification 
The process of parametric amplification corresponds to the time reversed process 

of frequency up-conversion. A pump photon with frequency up is absorbed followed 
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by the emission of a signal and idler photon with frequencies ws and wi respectively 
(see figure 4). 

Thus the illumination of the medium with a strong pump field results in the 
amplification of the signal field at frequency 0,. 

Figure 4. Parametric amplification as a multiphoton process. 

The  free Hamiltonian is identical to equation (5.2). The interaction Hamiltonian 
is 

N 
Hl = h/P 2 (apcljC2~+ap + CIJ .+ c23 ) 

5=1 
N 

+ h p '  2 (Cljfc2jai+U~ + c,jk2pias). (7.1). 

This system may be analysed in an exactly analogous fashion to that described in 
the preceding section. For N atoms acting independently, and all initially in the 
ground state the signal field is amplified at a rate given by 

f = 1  

i Aw sin Gat) - 
Ngs,"gp2 lexp(i Awt)  

Ga 
P(t) = 

Ga4 
where 

112 ( 2 )  g , = n  P 
g,, = ((n, + l)(ni + l)}1'2p(1) 
G, = (8,' +gs: + A w ~ ) ~ " .  (7.3) 

For short times and Aw = 0 this reduces to 

For an initial state with signal and idler modes in the vacuum the amplification 
process begins by spontaneous emission. The  amplification process is enhanced by 
atomic cooperation in a like fashion to frequency conversion. 

8. Superradiance 
We present here an exact solution to a model problem illustrating the phenomena 

of superradiance. We consider two 2-level atoms denoted by CI and ,8 interacting with 
a single mode of the radiation field with frequency v. The two atoms are assumed to 
lie within a 'cooperation length' (Dicke 1954, Arecchi and Courtens 1970) of each 
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other. Effects related to the spatial separation of the two atoms involve the interaction 
with many field modes. This problem has been considered by Stephen (1964) and 
Arecchi and Courtens (1970). 

The Hamiltonian describing the interaction is 

Ho = hvata + hwczatcza + ?iwczBtcZI, 

Hl =i hpL(1)(ac2,tcl, + atczaclat) + hp(l)(aczaiclii + atczgclgt) 
(8.1) 
(8.2) 

where we allow for a frequency mismatch between the field and the atomic energy 
levels 26 = w - v .  

We choose as a basis set the states Ij,, j,, n ) ,  where I j )  are the stationary states 
of the atoms and In) are the number states of the field. For the case where only one 
quantum of energy is present a complete set of basis states is given by 

Yt = (l2,, I,, o > ,  Ip,, 2/33 o > ,  lp,, I,, 1 >). (8 .3)  
The interaction matrix A (equation (3.6)) in this representation is 

The eigenvalues of the system are 6, k G where 

G = (2p,(1)'+62)1'2. (8 .5 )  
The wavefunction of the system at time t may be described by a linear combination 

of the basis states 

Y ( t )  = az1(t)l2,, I,, O)+a, , ( t ) jL  2/3, O>+a11(t)I~,3 I,, 1 > *  (8.6) 
The probability amplitudes au(t) calculated from the eigenstates and eigenvalues of 
A are 

1/2A d 2 A  2F 
where 

I? = exp( - i st )  cos Gt + - sin Gt 
G 

i 1/2y(l) 
G 

A=--- exp(i st)  sin Gt. 

If initially there is an atomic excitation (all(0) = 0) the probability amplitude for 
a photon emission at time t is 

i p 
aI l ( t )  = - exp(i st) sin Gt(azl(0) + a12(0)}. G 

Thus for an initial state with wavefunction 

(8.9)' 
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the probability of emitting a photon is zero. This antisymmetrical state is known as a 
subradiant state. 

If the initial state has the symmetrical wavefunction 

the probability for a photon emission is 

(8.10) 

(8.11) 

This is twice the probability of emission from an isolated excited atom. Thus the 
symmetrical state is known as a superradiant state. 
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